

TOPPY KEY HANDLING

(Notably for TF5800)

1 INTRODUCTION

The descriptions below are intended to indicate the main data flows as they need to be
understood by TAP writers, and are not intended as definitive statements of Topfield’s
firmware design.

The very early TF5800 firmware used a different system which is not discussed here.

2 STANDARD FIRMWARE PROCESSES

Fig 1 shows the “official” keypress handling within the Toppy. The main stages are:

(1) The input from the remote control unit & front panel are received by the firmware as
number in the range 0x10000 to 0x100FF (not all of which are used, course). If the
number is greater than 0x1007F then subtract 0x1007F from the value (effectively
making 0x10080 to 0x100FF a direct repeat of 0x10000 to 0x1007F). This will
actually be done with a bitwise operation of course - probably something silly like
they only wired up 7 bits of the connection somewhere. This is the cause of the
discrete Power Off code as it is done in firmware so cannot turn the Toppy on.

N.B. The actual key labels differ between models, with some functions moving and others
combined, changed, or missing according to model. At this stage there is the same
relationship between key code and key position for all models, and not between functions
and key codes.

(2) The input key data is mapped onto the values that the TAPs see, still in the range

0x10000 to 0x10050. This mapping is not simple addition of a constant. These are
the values that are allocated to the RKEY_xx series of constants in the KEY.h file.
The names allocated are based on the Non-TF5800 key labels, so about 30% are a
little or completely misleading for the TF 5800.

(3) For the TF5800 only, further mapping is performed in which some keys are

combined to form a single code, and others are swapped round. This is done to
ensure that basic functions such as V+/-, Tv/Radio & Exit appear to be the same to
the TAPs, even though the physical keys are different. However this mapping does
not apply to all functions that have moved, such as Text/Teletext.

(4) The results are passed as param1 to the first TAP, together with zero in param2.

The TAP returns a key value, normally the param1 value or zero – see next item.

(5) If the return value is zero, the keypress goes no further. If a non-zero value is
passed, the original param1 value (NOT the modified value) is passed to the next
TAP, or to the native Toppy functions.

N.B. There is one exception – if TAP_ExitNormal() has not been sent or if it has been
cancelled with TAP_EnterNormal(), the “<<” “>>” keypresses will seen by the firmware
even if zero has been returned.

(6) Processes 4 & 5 are repeated for up to 15 more TAPs.

(7) TAPs may simulate a keypress using the “TAP_GenerateEvent” function. This goes
to the input of the special TF5800 mapping function, so the TAP has to invert that
mapping to simulate the mapped keys. Param2 in “TAP_GenerateEvent” is ignored.

(8) The native Toppy functions such as EPG etc also have access to the unmapped

keys, so they can distinguish between the combined keys.

FIRST TAP

COLOUR CODING
KeyPress from RCU

KeyPress from RCU

(1) Key range
~0x10000 to 0x100FF

(2) Map keys (still
0x10000 onwards)

(3) Apply special
TF5800 mapping

TAP_EventHandler param1

(4) TAP
Potentially modifies

param1 value

(6) Ditto TAPs 2-16

TAP_EventHandler
param2

(5) If modified param1
value = 0 do nothing,
else pass on original

value

(8) Native Toppy
functions such as EPG,

menus, Archive etc

(7) TAP_GenerateEvent
param1

All Toppy Fn

TF5800 Fn

TAP Fn

TAP_EventHandler
param2 = 0

3 ADDITIONAL FEATURES ADDED BY FIRMWARE “HACKS”

Three additional features are available via hacks to the firmware implemented by TAPs as
detailed below. All are specifically aimed at bypassing the special TF5800 mapping with it
key combining, and thus allows all the keys to be used by TAPs.

(9) The “Remote Extender” TAP takes the original keypresses, does some mapping,
and inserts them into param2 of TAP_EventHandler in place of the standard zero.

(10) The exTAP_KeyExtend() function and the RemExt patch each puts the value prior

to the special UK mapping into param2 of TAP_EventHandler.

(11) The TAP_GenerateKeypress() function simulates a keypress prior to the sample
points of (9) & (10), and thus allows them to be used to distinguish between the
combined keys. This can be called by any TAP wishing to simulate key presses.

As can be seen from the above, Remote Extender (which is a TAP in its own right) and
exTAPKeyExtend() (which can be called up by any other TAP), and the RemExt patch all
write into the same data item. As exTAPKeyExtend() and the RemExt patch write the same
data there is no conflict. Remote Extender will overwrite the data provided by either of the
others, so its data will always take precedence when it is running.

4 COMMAND KEY CODES

Key codes 0x10027 to 0x10036 are used by Topfield for special test purposes, and can do
very nasty things to your Toppy. DO NOT USE THEM (at least one is reputed to overwrite
the EEPROM including the loader, so cannot be reversed by software means)!

FIRST TAP

COLOUR CODING

KeyPress from RCU
KeyPress from RCU

(1) Key range
~0x10000 to 0x10FF

(2) Map keys (still
0x10000 onwards)

(3) Apply special
TF5800 mapping

(9) Remote Extender
TAP Re-map

TAP_EventHandler param1

(10)
exTAP KeyExtend() Fn

or
RemExt Patch

(4) TAP
Potentially modifies

param1 value

(6) Ditto TAPs 2-16

TAP_EventHandler
param2

(5) If modified param1
value = 0 do nothing,
else pass on original

value

(8) Native Toppy
functions such as EPG,

menus, Archive etc

(7) TAP_GenerateEvent
param1

All Toppy Fn

TF5800 Fn

(11) TAP_Generate
Keypress()

TAP Fn

5 KEY CODES ETC

 The table below relates the various key codes & remote control labels for the different
models. It is laid out roughly from top to bottom on the Remote Control Unit using the
numbering system in the TF5800 manual. As stated above, the two types of RCU have the
same physical keys, but different legends, and one row provides the data for one key
position on the two model types. The contents of the columns are as follows:

Column 1: The reference number allocated to the key in the TF5800 manual. Where one
reference number in the manual refers to a group of keys, they have been subdivided (e.g.
the numeric keys are grouped as No 6 in the manual, and are numbered 6.0 to 6.9 in the
table).

Column 2: The key caption on the TF5800 remote.

Column 3: The reference number allocated to the key in the TF5000 manual. Where one
reference number in the manual refers to a group of keys, they have been subdivided (e.g.
the numeric keys are No 6 in the manual, and are numbered 6.0 to 6.9 in the table).

Column 4: The key caption on the TF5000 remote.

Column 5: The RKEY constant equivalent to the param1 value seen by a TAP when that
key is pressed on the TF5800 remote.

Column 6: The RKEY constant equivalent to the param1 value seen by a TAP when that
key is pressed on the TF5000 remote. This is also the value returned by either the exTAP
KeyExtend() function or the RemExt patch in param2 on the TF5800.

Columns 7 & 8: give the hex equivalents of columns 5 & 6.

Column 9: The value of param2 returned by Remote Extender.

Column 11: The RKEY constant to be used to generate the relevant simulated keypress.
As one would expect from the logic description above, this is always the same as column
6.

The values to be used in TAP_GenerateKeypress() are different again, but can always be
obtained from column 10 with the logic “(Col 10 value & 0xFF) | 0x10000”.

6 KEY LAYOUTS

See http://members.optusnet.com.au/toppytools/gallery.html for UK & Australian remote
control unit layouts.

7 ACKNOWLEDGEMENTS

To various contributors to the Toppy.org.uk forums where I have collected most of my
information, but particularly to “simonc”.

8 VERSION HISTORY

23/3/2007: Initial “public” version.

8/6/2007: Update to reflect input from
http://forum.toppy.org.uk/forum/viewtopic.php?t=8081.

11/9/2007: Update to reflect feedback from R2-D2 and include reference to “RemExt”
patch.

EMJB

KEY LABELS & PARAMETER VALUES

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8 Col 9 Col 10 Col 11
Posn in
TF5800
Manual

TF5800
Key

Name

Posn in
TF5000
Manual

TF5000
Key

Name

Key H for UK Key H Other TF5800
param1

Hex

TF5000 param1
ExTap K.E. param2

RemExt Patch param2
(Hex)

Remote
Extender
param2

Hex

TF5800
TAP_Gen_Evt

Code

Notes

1 Power 1 Power RKEY_Power RKEY_Power 1000A 1000A 1F0 RKEY_Power
2 Mute 2 Mute RKEY_Mute RKEY_Mute 1000C 1000C 10C RKEY_Mute
3 TV/Radio 3 UHF RKEY_TvRadio RKEY_Uhf 10018 1000E 143 RKEY_Uhf
4 TvSat 4 TV/STB RKEY_TvSat RKEY_TvSat 10022 10022 108 RKEY_TvSat
5 Opt 5 Sleep RKEY_Sleep RKEY_Sleep 10010 10010 144 RKEY_Sleep

6.0 0 6.0 0 RKEY_0 RKEY_0 10000 10000 110 RKEY_0
6.1 1 6.1 1 RKEY_1 RKEY_1 10001 10001 111 RKEY_1
6.2 2 6.2 2 RKEY_2 RKEY_2 10002 10002 112 RKEY_2
6.3 3 6.3 3 RKEY_3 RKEY_3 10003 10003 113 RKEY_3
6.4 4 6.4 4 RKEY_4 RKEY_4 10004 10004 114 RKEY_4
6.5 5 6.5 5 RKEY_5 RKEY_5 10005 10005 115 RKEY_5
6.6 6 6.6 6 RKEY_6 RKEY_6 10006 10006 116 RKEY_6
6.7 7 6.7 7 RKEY_7 RKEY_7 10007 10007 117 RKEY_7
6.8 8 6.8 8 RKEY_8 RKEY_8 10008 10008 118 RKEY_8
6.9 9 6.9 9 RKEY_9 RKEY_9 10009 10009 119 RKEY_9
7 Recall 7 Recall RKEY_Recall RKEY_Recall 1000B 1000B 11E RKEY_Recall
8 Info 8 Info RKEY_Info RKEY_Info 10014 10014 11D RKEY_Info
9 Guide 9 Guide RKEY_Guide RKEY_Guide 10016 10016 11B RKEY_Guide
10 Menu 11 Menu RKEY_Menu RKEY_Menu 1001C 1001C 11A RKEY_Menu
11 List 10 TV/Radio RKEY_TvRadio RKEY_TvRadio 10018 10018 104 RKEY_TvRadio
12 Exit 12 Sound RKEY_Exit RKEY_AudioTrk 10017 10013 105 RKEY_AudioTrk

13.1 V+ 16 Fav RKEY_VolUp RKEY_Fav 10015 10020 109 RKEY_Fav
13.2 V- 18 Exit RKEY_VolDown RKEY_Exit 1000F 10017 11C RKEY_Exit
14.1 P+ 17 Subtitle RKEY_ChUp RKEY_Subt 10012 10021 107 RKEY_Subt
14.2 P- 19 Teletext RKEY_ChDown RKEY_Teletext 1001D 10037 147 RKEY_Teletext
15 OK/List 15 OK RKEY_Ok RKEY_Ok 1001E 1001E 11F RKEY_Ok

16.1 Up 14.1 P+ RKEY_ChUp RKEY_ChUp 10012 10012 100 RKEY_ChUp
16.2 Down 14.2 P- RKEY_ChDown RKEY_ChDown 1001D 1001D 101 RKEY_ChDown
17.1 Left 13.1 V- RKEY_VolDown RKEY_VolDown 1000F 1000F 103 RKEY_VolDown

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8 Col 9 Col 10 Col 11
17.2 Right 13.2 V+ RKEY_VolUp RKEY_VolUp 10015 10015 102 RKEY_VolUp
18 << 20 << RKEY_Rewind RKEY_Rewind 10038 10038 145 RKEY_Rewind
19 > 21 > RKEY_Play RKEY_Play 10039 10039 146 RKEY_Play
20 >> 22 >> RKEY_Forward RKEY_Forward 1003A 1003A 148 RKEY_Forward
21 Live 24 Stop RKEY_Stop RKEY_Stop 1003C 1003C 14A RKEY_Stop
22 Record 25 Record RKEY_Record RKEY_Record 1003D 1003D 14B RKEY_Record
23 Pause 26 Pause RKEY_Pause RKEY_Pause 1001A 1001A 106 RKEY_Pause
24 Slow

Motion
23 Slow

Motion
RKEY_Slow RKEY_Slow 1003B 1003B 149 RKEY_Slow

25 Pip 27 Pip CCW RKEY_Prev RKEY_Prev 10041 10041 150 RKEY_Prev
26 Archive 34 PlayList RKEY_PLayList RKEY_PLayList 10042 10042 151 RKEY_PLayList
27 Text 28 Pip CW RKEY_Next RKEY_Next 10043 10043 152 RKEY_Next
28 Pip

Switch
29 Sat RKEY_Sat RKEY_Sat 10040 10040 15E RKEY_Sat

29 White 35 White RKEY_Ab RKEY_Ab 1003E 1003E 14C RKEY_Ab
30 Red 30 Red RKEY_NewF1 RKEY_NewF1 1003F 1003F 14D RKEY_NewF1
31 Green 31 Green RKEY_F2 RKEY_F2 10024 10024 10D RKEY_F2
32 Yellow 32 Yellow RKEY_F3 RKEY_F3 10025 10025 10E RKEY_F3
33 Blue 33 Blue RKEY_F4 RKEY_F4 10026 10026 10F RKEY_F4

SPECIAL COMMAND CODES

 0
 RKEY_Cmd_1 RKEY_Cmd_1 0x10027 0 test colour bars
 RKEY_Cmd_2 RKEY_Cmd_2 0x10028 0 blank screen
 RKEY_Cmd_3 RKEY_Cmd_3 0x1002A 0 all channels go blank
 RKEY_Cmd_4 RKEY_Cmd_4 0x1002B 0 all channels go blank
 RKEY_Cmd_5 RKEY_Cmd_5 0x1002C 0
 RKEY_Cmd_6 RKEY_Cmd_6 0x1002D 0 jumps to the beginning

of the timeshift/record
buffer

 RKEY_Cmd_7 RKEY_Cmd_7 0x1002E 0
 RKEY_Cmd_8 RKEY_Cmd_8 0x1002F 0
 RKEY_Cmd_9 RKEY_Cmd_9 0x10030 0
 RKEY_Cmd_a RKEY_Cmd_a 0x10031 0 unit stops responding
 RKEY_Cmd_b RKEY_Cmd_b 0x10032 0 test bars – black and

white split half screen

 RKEY_Cmd_c RKEY_Cmd_c 0x10033 0 test bars – black and
red split half screen

 RKEY_Cmd_d RKEY_Cmd_d 0x10034 0 test bars – black
and green split half

screen

 RKEY_Cmd_e RKEY_Cmd_e 0x10035 0 test bars – black and
blue split half screen

 RKEY_Cmd_f RKEY_Cmd_f 0x10036 0 FACTORY RESET

